此代码已经继续加入单步预测(单变量、多特征变量、风速、电力负荷预测)全家桶:单步预测全家桶(单变量、多特征变量、风速、电力负荷预测) (mbd.pub)
单变量包括以下内容:
1.VMD-CNN-Transformer预测模型 (mbd.pub)
2.VMD-CNN-BiLSTM预测模型 (mbd.pub)
3.基于Python时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 (mbd.pub)
4.风速预测:基于EMD-LSTM的预测模型 (mbd.pub)
5.单步预测模型(三)CNN-GRU并行模型 (mbd.pub)
6.风速预测:EMD-Transformer模型 (mbd.pub)
8.风速预测:EMD-CNN-LSTM模型 (mbd.pub)
9.单步预测模型(二)CNN-LSTM模型 (mbd.pub)
10.风速预测:EMD-LSTM-Attention(基于Pytorch实现) (mbd.pub)
11.风速预测:EMD-CNN-GRU并行模型 (mbd.pub)
12.单步预测(八)CEEMDAN-TCN-Attention预测模型 (mbd.pub)
多特征变量包括以下内容:
2.多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型 (mbd.pub)
3.多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型 (mbd.pub)
4.多特征变量序列预测(三)CNN-Transformer风速预测模型 (mbd.pub)
5.多特征变量序列预测(二)CNN-LSTM-Attention风速预测模型 (mbd.pub)
6.多特征变量序列预测(一)CNN-LSTM风速预测模型 (mbd.pub)
7.多特征变量序列预测(四)Transformer-BiLSTM风速预测模型 (mbd.pub)
8.多特征变量序列预测-Transformer预测模型 (mbd.pub)
9.多特征变量序列预测-LSTM预测模型 (mbd.pub)
10.多特征变量序列预测(五)CEEMDAN+CNN-LSTM风速预测模型 (mbd.pub)
11.多特征变量序列预测(11) 基于Pytorch的TCN-GRU预测模型 (mbd.pub)
在处理LSTF问题时,选择合适的窗口大小(window size)是非常关键的。选择合适的窗口大小可以帮助模型更好地捕捉时间序列中的模式和特征,为了提取序列中更长的依赖建模,本文把窗口大小提升到96,运用EMD-CNN-GRU并行模型来充分提取序列中的特征信息。
包括 风速数据, 以及已经生成制作好的经过EMD分解的风速数据集、标签集,对应代码均可以运行,还有EMD分解示例
EMD-CNN-GRU并行模型, 有着更小的MSE, MAE,效果特别明显,能够有效提取 长窗口中的有效信息
包括数据EMD预处理的代码,和完整EMD-CNN-GRU并行模型预测代码
环境:python 3.9
任何环境安装或者代码问题,请联系作者沟通交流,对于购买者,作者免费解决调试问题,关注微信公众号[建模先锋],联系作者;

(平台显示上传文件少于图片中文件解释:平台上传文件数量有限制,按照解释文件运行,数据可以根据上传的代码 生成)

