详细实现细节见文章
yolov10+bytetrack的目标跟踪实现-CSDN博客
此次yolov10+bytetrack不论是准确率还是稳定性,再次超越了之前的yolo+bytetrack系列。
yolov10介绍——实时端到端物体检测
YOLOv10 是清华大学研究人员在 UltralyticsPython 清华大学的研究人员在 YOLOv10软件包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 在显著降低计算开销的同时实现了最先进的性能。大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度-延迟权衡。

编辑
概述
实时物体检测旨在以较低的延迟准确预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于这项研究的前沿。然而,对 NMS 的依赖和架构上的低效阻碍了最佳性能的实现。YOLOv10 通过为无 NMS 训练引入一致的双重分配和以效率-准确性为导向的整体模型设计策略,解决了这些问题。
YOLOv10 的结构建立在以前YOLO 模型的基础上,同时引入了几项关键创新。模型架构由以下部分组成:
- 主干网YOLOv10 中的主干网负责特征提取,它使用了增强版的 CSPNet(跨阶段部分网络),以改善梯度流并减少计算冗余。
- 颈部颈部设计用于汇聚不同尺度的特征,并将其传递到头部。它包括 PAN(路径聚合网络)层,可实现有效的多尺度特征融合。
- 一对多头:在训练过程中为每个对象生成多个预测,以提供丰富的监督信号并提高学习准确性。
- 一对一磁头:在推理过程中为每个对象生成一个最佳预测,无需 NMS,从而减少延迟并提高效率。
主要功能
- 无 NMS 训练:利用一致的双重分配来消除对 NMS 的需求,从而减少推理延迟。
- 整体模型设计:从效率和准确性的角度全面优化各种组件,包括轻量级分类头、空间通道去耦向下采样和等级引导块设计。
- 增强的模型功能:纳入大核卷积和部分自注意模块,在不增加大量计算成本的情况下提高性能。
型号
YOLOv10 有多种型号,可满足不同的应用需求:
- YOLOv10-N:用于资源极其有限环境的纳米版本。
- YOLOv10-S:兼顾速度和精度的小型版本。
- YOLOv10-M:通用中型版本。
- YOLOv10-B:平衡型,宽度增加,精度更高。
- YOLOv10-L:大型版本,精度更高,但计算资源增加。
- YOLOv10-X:超大型版本可实现最高精度和性能。
性能
在准确性和效率方面,YOLOv10 优于YOLO 以前的版本和其他最先进的模型。例如,在 COCO 数据集上,YOLOv10-S 的速度是RT-DETR-R18 的 1.8 倍,而 YOLOv10-B 与 YOLOv9-C 相比,在性能相同的情况下,延迟减少了 46%,参数减少了 25%。
模型 输入尺寸 APval FLOP (G) 延迟(毫秒) YOLOv10-N 640 38.5 6.7 1.84 YOLOv10-S 640 46.3 21.6 2.49 YOLOv10-M 640 51.1 59.1 4.74 YOLOv10-B 640 52.5 92.0 5.74 YOLOv10-L 640 53.2 120.3 7.28 YOLOv10-X 640 54.4 160.4 10.70 使用TensorRT FP16 在 T4GPU 上测量的延迟。
方法
一致的双重任务分配,实现无 NMS 培训
YOLOv10 采用双重标签分配,在训练过程中将一对多和一对一策略结合起来,以确保丰富的监督和高效的端到端部署。一致匹配度量使两种策略之间的监督保持一致,从而提高了推理过程中的预测质量。
效率-精度驱动的整体模型设计
提高效率
- 轻量级分类头:通过使用深度可分离卷积,减少分类头的计算开销。
- 空间信道解耦向下采样:将空间缩减与信道调制解耦,最大限度地减少信息损失和计算成本。
- 梯级引导程序块设计:根据固有阶段冗余调整模块设计,确保参数的最佳利用。
精度提升
- 大核卷积扩大感受野,增强特征提取能力。
- 部分自我关注(PSA):纳入自我关注模块,以最小的开销改进全局表征学习。
实验和结果
YOLOv10 在 COCO 等标准基准上进行了广泛测试,显示出卓越的性能和效率。与以前的版本和其他当代探测器相比,YOLOv10 在延迟和准确性方面都有显著提高。
比较
编辑与其他最先进的探测器相比:
- YOLOv10-S / X 比RT-DETR-R18 / R101 快 1.8 倍 / 1.3 倍,精度相似
- 在精度相同的情况下,YOLOv10-B 比 YOLOv9-C 减少了 25% 的参数,延迟时间缩短了 46%
- YOLOv10-L / X 的性能比YOLOv8-L / X 高 0.3 AP / 0.5 AP,参数少 1.8× / 2.3×
以下是 YOLOv10 变体与其他先进机型的详细比较:

yolov10结合bytetrack实现目标跟踪
此次yolov10的出现,将把yolov10和目标跟踪SOTA:bytetrack进行结合,实现更快,更准,更细致的跟踪。
效果展示
训练与预测
编辑
编辑
UI设计
将本次的实验使用pyqt打包,方便体验编辑