小面包 面包多
简介
评论
作品封面
永久回看

电力负荷超前96步预测,采用2024最新鹭鹰算法优化ELM实现,MATLAB代码

¥42
投诉
头像
淘个代码 悄悄学习,悄悄拔尖^_^ 主攻机器学习,数据处理,智能优化算法,matlab,Python语言
作品简介

本期电力负荷预测数据来源为:《第九届电工数学建模竞赛试题_2016》

数据概况如下:


简介

本期内容:

①对电力负荷数据进行简单综合处理,划分训练集和测试集

②采用标准的极限学习机ELM实现电力负荷预测

③采用2024年最新鹭鹰算法优化极限学习机的权值阈值,降低预测误差

④采用白鲸算法优化ELM,并与鹭鹰算法对比,突出鹭鹰算法的高效准确性


内容详解


①对电力负荷数据进行处理

本次数据包含最高温度℃,最低温度℃,平均温度℃,相对湿度(平均),降雨量(mm)部分数据截图如下:


数据的处理方式如下:

将2012年1月1号到2015年1月17号的负荷数据和天气数据(因为只有这几天的数据是既有天气特征,又有负荷数据的)综合到一起,得到data变量。

选取前6天数据(包括负荷和当天的最高温度℃,最低温度℃,平均温度℃,相对湿度(平均),降雨量(mm))去预测未来一天的数据。

代码中一共选取了60个样本作为训练集,

1个样本作为测试集,实现未来一天,也就是实现超前96个时刻的负荷预测

将MAPE作为误差指标(很多文献都这么做!)。

②采用极限学习机(ELM)对电力负荷数据进行训练和预测

预测结果如下:


可以看到,未优化的ELM预测效果不是很理想。

③采用2024年最新鹭鹰算法优化极限学习机的权值阈值,并与白鲸算法做对比。






由误差对比曲线和预测结果对比,可以看到鹭鹰算法(SBOA)优化ELM的收敛精度是非常高的!

原理代码

数据替换较为简单,代码简单易懂,可以二次开发。

代码获取

代码目录如下:



付费42元可获得

评论 100% 推荐

暂时还没有评论


头像
淘个代码 悄悄学习,悄悄拔尖^_^ 主攻机器学习,数据处理,智能优化算法,matlab,Python语言
关注
45 喜欢 6 关注 3927 粉丝 151 作品

在您购买本平台付费作品前,请您认真阅读本声明内容。如果您对这份声明没有异议,则可以继续购买 >>>

  • 主页
  • 私信
登录或购买

电力负荷超前96步预测,采用2024最新鹭鹰算法优化ELM实现,MATLAB代码

作品简介

本期电力负荷预测数据来源为:《第九届电工数学建模竞赛试题_2016》

数据概况如下:


简介

本期内容:

①对电力负荷数据进行简单综合处理,划分训练集和测试集

②采用标准的极限学习机ELM实现电力负荷预测

③采用2024年最新鹭鹰算法优化极限学习机的权值阈值,降低预测误差

④采用白鲸算法优化ELM,并与鹭鹰算法对比,突出鹭鹰算法的高效准确性


内容详解


①对电力负荷数据进行处理

本次数据包含最高温度℃,最低温度℃,平均温度℃,相对湿度(平均),降雨量(mm)部分数据截图如下:


数据的处理方式如下:

将2012年1月1号到2015年1月17号的负荷数据和天气数据(因为只有这几天的数据是既有天气特征,又有负荷数据的)综合到一起,得到data变量。

选取前6天数据(包括负荷和当天的最高温度℃,最低温度℃,平均温度℃,相对湿度(平均),降雨量(mm))去预测未来一天的数据。

代码中一共选取了60个样本作为训练集,

1个样本作为测试集,实现未来一天,也就是实现超前96个时刻的负荷预测

将MAPE作为误差指标(很多文献都这么做!)。

②采用极限学习机(ELM)对电力负荷数据进行训练和预测

预测结果如下:


可以看到,未优化的ELM预测效果不是很理想。

③采用2024年最新鹭鹰算法优化极限学习机的权值阈值,并与白鲸算法做对比。






由误差对比曲线和预测结果对比,可以看到鹭鹰算法(SBOA)优化ELM的收敛精度是非常高的!

原理代码

数据替换较为简单,代码简单易懂,可以二次开发。

代码获取

代码目录如下:



创作时间: