小面包 面包多
简介
评论
作品封面
永久回看

YOLOv6-基于深度学习的快递包裹检测系统—网页版+YOLOv6代码+训练数据集

¥145
投诉
头像
逗逗班学Python 专注于机器视觉、深度学习、大数据等领域项目总结分享,擅长利用Python、MATLAB进行数据分析、深度学习、Web开发和各种技术解决方案
作品简介

功能基于YOLOv6的快递包裹检测系统,同时采用YOLOv6深度学习算法,基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时摄像头进行快递包裹检测,可上传不同训练模型(YOLOv6)进行推理预测,在网页上显示检测结果,也可选择单个目标显示,检测过程结果记录并显示在网页表格中,可导出检测结果为csv文件导出带标注框的结果视频文件。附带了完整的网页设计、深度学习模型代码、训练数据集的完整资源。

 

付费完成后面包多网站会在本页面下方自动解锁资源下载链接,滑动页面到下方就能看到了,点击下载即可。

此代码资源包为本人在 CSDN 、知乎、博客园等平台上分享的博文:基于深度学习的快递包裹检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)中分享的完整代码和资源整合。包含训练数据集、训练代码、UI界面代码、深度学习模型等完整资源。


网页功能与效果



完整安装运行教程:


这个项目的运行需要用到Anaconda和Pycharm两个软件,下载到资源代码后,您可以按照以下链接提供的详细安装教程操作即可运行成功,如仍有运行问题可私信博主解决:

(1)Pycharm和Anaconda的安装教程https://deepcode.blog.csdn.net/article/details/136639378


软件安装好后需要为本项目新建Python环境、安装依赖库,并在Pycharm中设置环境,这几步采用下面的教程可选在线安装(pip install直接在线下载包)或离线依赖包(博主提供的离线包直接装)安装两种方式之一:

(2)Python环境配置教程https://deepcode.blog.csdn.net/article/details/136639396(2,3方法可选一种);

(3)离线依赖包的安装指南https://deepcode.blog.csdn.net/article/details/136650641(2,3方法可选一种);

如使用离线包方式安装,请下载离线依赖库,下载地址:https://pan.baidu.com/s/1uHbU9YzSqN0YP_dTHBgpFw?pwd=mt8u

(提取码:mt8u)。

创作时间:2024-03-28 18:57:58

付费145元可获得

购买该全家桶含此作品及其他作品共3件

YOLOv8/v7/v6/v5-快递包裹检测系统网页版完整资源合集 全家桶

YOLOv8/v7/v6/v5-快递包裹检测系统网页版完整资源合集

¥435 仅需 ¥289

评论 推荐Ta

暂时还没有评论


头像
逗逗班学Python 专注于机器视觉、深度学习、大数据等领域项目总结分享,擅长利用Python、MATLAB进行数据分析、深度学习、Web开发和各种技术解决方案
关注
0 喜欢 0 关注 758 粉丝 320 作品

在您购买本平台付费作品前,请您认真阅读本声明内容。如果您对这份声明没有异议,则可以继续购买 >>>

  • 主页
  • 私信
登录或购买

YOLOv6-基于深度学习的快递包裹检测系统—网页版+YOLOv6代码+训练数据集

作品简介

功能基于YOLOv6的快递包裹检测系统,同时采用YOLOv6深度学习算法,基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时摄像头进行快递包裹检测,可上传不同训练模型(YOLOv6)进行推理预测,在网页上显示检测结果,也可选择单个目标显示,检测过程结果记录并显示在网页表格中,可导出检测结果为csv文件导出带标注框的结果视频文件。附带了完整的网页设计、深度学习模型代码、训练数据集的完整资源。

 

付费完成后面包多网站会在本页面下方自动解锁资源下载链接,滑动页面到下方就能看到了,点击下载即可。

此代码资源包为本人在 CSDN 、知乎、博客园等平台上分享的博文:基于深度学习的快递包裹检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)中分享的完整代码和资源整合。包含训练数据集、训练代码、UI界面代码、深度学习模型等完整资源。


网页功能与效果



完整安装运行教程:


这个项目的运行需要用到Anaconda和Pycharm两个软件,下载到资源代码后,您可以按照以下链接提供的详细安装教程操作即可运行成功,如仍有运行问题可私信博主解决:

(1)Pycharm和Anaconda的安装教程https://deepcode.blog.csdn.net/article/details/136639378


软件安装好后需要为本项目新建Python环境、安装依赖库,并在Pycharm中设置环境,这几步采用下面的教程可选在线安装(pip install直接在线下载包)或离线依赖包(博主提供的离线包直接装)安装两种方式之一:

(2)Python环境配置教程https://deepcode.blog.csdn.net/article/details/136639396(2,3方法可选一种);

(3)离线依赖包的安装指南https://deepcode.blog.csdn.net/article/details/136650641(2,3方法可选一种);

如使用离线包方式安装,请下载离线依赖库,下载地址:https://pan.baidu.com/s/1uHbU9YzSqN0YP_dTHBgpFw?pwd=mt8u

(提取码:mt8u)。

创作时间:2024-03-28 18:57:58