【钉钉杯大学生大数据挑战赛】 初赛B 航班数据分析与预测 Python代码实现

作品简介

1 题目

初赛 B:航班数据分析与预测 

一.问题背景 

随着科技的发展,乘坐飞机出行为人们的生活带来了极大的便利,航空交通 管理影响着人们的工作和生活效率。在大数据和人工智能时代的今天,各种各样 的信息科学和工程技术广泛应用于航空领域,为人们的生产生活提供更高的便利 性,因此提高空中资源的优化配置,一直都是计算机科学与技术、信息科学与工 程、数学等领域的一门热点研究方向。当前航空延误是空中资源优化配置的一项 经典课题,分析与预测航空延误有助于提高资源的优化管理,提高生产生活效率,可以为乘客提供更优质的服务。

二.解决问题 

1.航班转机功能实现:当两个城市之间没有直飞航班或者在购买机票附件时 间没有直飞航班的时候,乘客通常需要购票 APP 实现转机功能。

(一)以附件中 2001-2003 年航班数据作为依据,实现在2001-2003年的航班转机功能。(注:从 A 地到 B 地可以有多种转机方案,该功能应提供时间最短 的方案,已知的航班延误信息也应考虑在内)。 

(二)用上述转机功能,查询 2003 年 7 月 4 日出发 7 月 5 日到达,从 CVG 机场到 ANC 机场最短时间方案。(注:航班延误时间也考虑在内) 

2.迈阿密(MIA)起飞航班的延误分析

以论文形式说明:先给出自己对问题(一)和(二)航班延误的分析,再建 立模型做实验得到航班是否延误的准确率,以实验结果检验自己最初的分析。

(一)以附件中的 2001-2003 年的航班数据作为训练集,以附件 2004-2005 年的航班数据作为测试集,以从迈阿密(MIA)到洛杉矶(LAX)和从迈阿密(MIA) 到纽约(JFK)这两组航班数据作为研究对象,先以文字形式叙述预测航班是否 延误的依据,再建立模型预测从迈阿密(MIA)起飞航班(从 MIA 到 LAX 和从 MIA 到 JFK)是否延误,以预测准确率和实验结果检验自己的分析。(注:测试集不 能参与到训练和验证中,否则作违规处理) 

提示:可以在训练、验证和预测中使用机场所在地天气情况等信息,详见附件数据属性说明表。 

(二)以附件中的2001-2003 年的航班数据作为训练集,以附件2004-2005 年的航班数据作为测试集,以从迈阿密(MIA)到洛杉矶(LAX)和从迈阿密(MIA) 到纽约(JFK)这两组航班数据作为研究对象,先以文字形式分析航班延误的各 种原因,再建立模型预测从迈阿密(MIA)起飞航班(从 MIA 到 LAX 和从 MIA 到 JFK)延误的原因,以预测延误原因的准确率和实验结果检验自己的分析。(注:测试集不能参与到训练和验证中,否则作违规处理)

提示:参赛队伍可以先筛选出延误航班,再对延误航班的原因进行预测与分 析,详见属性说明表中航班延误原因。在训练、验证和预测中可以使用机场所在 地天气情况等信息,详见附件数据属性说明表。

2 Python实现

部分代码查看博客 http://t.csdn.cn/2Ot84

2022年7月25号23:50 所有代码已经更新完毕





创作时间:2022-07-24 09:14:06