基于贝叶斯推理估计稳态 (ST) 和非稳态 (NS) LPIII 模型分布拟合到峰值放电(Matlab代码实现)

作品简介
 👨‍🎓个人主页:研学社的博客 
💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现

​编辑

💥1 概述

在 NS 模型中,LPIII 分布的均值随时间变化。返回周期不是在真正的非平稳意义上计算的,而是针对平均值的固定值计算的。换句话说,假设分布在时间上保持固定,则计算返回周期。默认情况下,在对 NS LPIII 模型参数的估计值应用 bayes_LPIII时,将计算并显示更新的 ST 返回周期。更新的 ST 返回周期是通过计算与拟合期结束时的 NS 均值或 t = t(end) 相关的回报期获得的,假设分布在记录结束后的时间保持固定。

📚2 运行结果

​编辑

 ​编辑

 ​编辑

部分代码:

cf = 1;            %multiplication factor to convert input Q to ft^3/s 

Mj = 2;            %1 for ST LPIII, 2 for NS LPIII with linear trend in mu

y_r = 0;            %Regional estimate of gamma (skew coefficient)

SD_yr = 0.55;         %Standard deviation of the regional estimate

%Prior distributions (input MATLAB abbreviation of distribution name used in 

%function call, i.e 'norm' for normal distribution as in 'normpdf')

marg_prior{1,1} = 'norm'; 

marg_prior{1,2} = 'unif'; 

marg_prior{1,3} = 'unif'; 

marg_prior{1,4} = 'unif';

%Hyper-parameters of prior distributions (input in order of use with 

%function call, i.e [mu, sigma] for normpdf(mu,sigma))

marg_par(:,1) = [y_r, SD_yr]'; %mean and std of informative prior on gamma 

marg_par(:,2) = [0, 6]';    %lower and upper bound of uniform prior on scale

marg_par(:,3) = [-10, 10]';  %lower and upper bound of uniform prior on location

marg_par(:,4) = [-0.15, 0.15]'; %lower and upper bound of uniform prior on trend 

%DREAM_(ZS) Variables

if Mj == 1; d = 3; end     %define number of parameters based on model

if Mj == 2; d = 4; end 

N = 3;             %number of Markov chains 

T = 8000;           %number of generations

%create function to initialize from prior

prior_draw = @(r,d)prior_rnd(r,d,marg_prior,marg_par); 

%create function to compute prior density 

prior_density = @(params)prior_pdf(params,d,marg_prior,marg_par);

%create function to compute unnormalized posterior density 

post_density = @(params)post_pdf(params,data,cf,Mj,prior_density);

%call the DREAM_ZS algorithm 

%Markov chains | post. density | archive of past states

[x,       p_x,     Z] = dream_zs(prior_draw,post_density,N,T,d,marg_prior,marg_par); 

%% Post Processing and Figures

%options:

%Which mu_t for calculating return level vs. return period? (don't change

%for estimates corresponding ti distribution at end of record, or updated ST distribution)

t = data(:,1) - min(data(:,1));               %time (in years from the start of the fitting period)

idx_mu_n = size(t,1);                    %calculates and plots RL vs RP for mu_t associated with t(idx_mu_n) 

                               %(idx_mu_n = size(t,1) for uST distribution) 

%Which return level for denisty plot? 

sRP = 100;                         %plots density of return level estimates for this return period

%Which return periods for output table?           %outputs table of return level estimates for these return periods

RP_out =[200; 100; 50; 25; 10; 5; 2]; 

%end options 

%apply burn in (use only half of each chain) and rearrange chains to one sample 

x1 = x(round(T/2)+1:end,:,:);                %burn in  

p_x1 = p_x(round(T/2)+1:end,:,:); 

post_sample = reshape(permute(x1,[1 3 2]),size(x1,1)*N,d,1); %columns are marginal posterior samples                              

sample_density = reshape(p_x1,size(p_x1,1)*N,1);      %corresponding unnormalized density 

%find MAP estimate of theta 

idx_theta_MAP = max(find(sample_density == max(sample_density))); 

theta_MAP = post_sample(idx_theta_MAP,:);          %most likely parameter estimate 

%Compute mu as a function of time and credible intervals 

if Mj == 1; mu_t = repmat(post_sample(:,3),1,length(t));end %ST model, mu is constant

if Mj == 2; mu_t = repmat(post_sample(:,3),1,length(t)) + post_sample(:,4)*t';end %NS mu = f(t)

MAP_mu_t = mu_t(idx_theta_MAP,:);              %most likely estimate of the location parameter

low_mu_t = prctile(mu_t,2.5,1);               %2.5 percentile of location parameter

high_mu_t = prctile(mu_t,97.5,1);              %97.5 percentile of location parameter

%compute quantiles of the LPIII distribution 

p = 0.01:0.005:0.995;                    %1st - 99.5th quantile (1 - 200 year RP)

a=1;

RLs = nan(size(post_sample,1),size(p,2));

for i = 1:size(post_sample,1);               %compute return levels for each posterior sample

  RLs(i,:) = lp3inv(p,post_sample(i,1),post_sample(i,2),mu_t(i,idx_mu_n)); 

  a = a+1;

  if a == round(size(post_sample,1)/10) || i == size(post_sample,1);

  clc

  disp(['Calculating Return Levels ' num2str(round(i/size(post_sample,1)*100)) '% complete'])

  a = 1; 

  end

end

MAP_RL = RLs(idx_theta_MAP,:);               %Return levels associated with most likely parameter estimate

low_RL = prctile(RLs,2.5,1);                %2.5 percentile of return level estimates

high_RL = prctile(RLs,97.5,1);               %97.5 percentile of return level estimates

 

🎉3 参考文献


部分理论来源于网络,如有侵权请联系删除。

[1]Adam Luke (2022). Non-Stationary Flood Frequency Analysis .

🌈4 Matlab代码实现


创作时间:2022-11-17 22:21:26