提供百度云盘地址
数据集采用无损压缩技术(不是通过改变分辨率大小缩小体积),原版约有7GB大小,无损压缩后1.8GB,方便存储下载减少下载时间。不影响训练效果
数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)
图片数量(jpg文件个数):23463
标注数量(xml文件个数):23463
标注数量(txt文件个数):23463
标注类别数:20
标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Expressway-Service-area","Expressway-toll-station","airplane","airport","baseballfield","basketballcourt","bridge","chimney","dam","golffield","groundtrackfield","harbor","overpass","ship","stadium","storagetank","tenniscourt","trainstation","vehicle","windmill"]
每个类别标注的框数:
Expressway-Service-area 框数 = 2165
Expressway-toll-station 框数 = 1298
airplane 框数 = 10104
airport 框数 = 1327
baseballfield 框数 = 5817
basketballcourt 框数 = 3225
bridge 框数 = 3967
chimney 框数 = 1681
dam 框数 = 1049
golffield 框数 = 1086
groundtrackfield 框数 = 3038
harbor 框数 = 5509
overpass 框数 = 3114
ship 框数 = 62400
stadium 框数 = 1268
storagetank 框数 = 26414
tenniscourt 框数 = 12266
trainstation 框数 = 1011
vehicle 框数 = 40370
windmill 框数 = 5363
总框数:192472
使用标注工具:labelImg
标注规则:对类别进行画矩形框
重要说明:暂无
特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
图片预览:

标注例子:
