DIOR遥感目标检测数据集VOC+YOLO格式23463张20类别

作品简介

提供百度云盘地址

数据集采用无损压缩技术(不是通过改变分辨率大小缩小体积),原版约有7GB大小,无损压缩后1.8GB,方便存储下载减少下载时间。不影响训练效果

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):23463

标注数量(xml文件个数):23463

标注数量(txt文件个数):23463

标注类别数:20

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Expressway-Service-area","Expressway-toll-station","airplane","airport","baseballfield","basketballcourt","bridge","chimney","dam","golffield","groundtrackfield","harbor","overpass","ship","stadium","storagetank","tenniscourt","trainstation","vehicle","windmill"]

每个类别标注的框数:

Expressway-Service-area 框数 = 2165

Expressway-toll-station 框数 = 1298

airplane 框数 = 10104

airport 框数 = 1327

baseballfield 框数 = 5817

basketballcourt 框数 = 3225

bridge 框数 = 3967

chimney 框数 = 1681

dam 框数 = 1049

golffield 框数 = 1086

groundtrackfield 框数 = 3038

harbor 框数 = 5509

overpass 框数 = 3114

ship 框数 = 62400

stadium 框数 = 1268

storagetank 框数 = 26414

tenniscourt 框数 = 12266

trainstation 框数 = 1011

vehicle 框数 = 40370

windmill 框数 = 5363

总框数:192472

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:


标注例子:



创作时间: