手语检测数据集VOC+YOLO格式9648张80类别

作品简介

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):9648

标注数量(xml文件个数):9648

标注数量(txt文件个数):9648

标注类别数:80

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["additional","alcohol","allergy","bacon","bag","barbecue","bill","biscuit","bitter","bread","burger","bye","cake","cash","cheese","chicken","coke","cold","cost","coupon","credit card","cup","dessert","drink","drive","eat","eggs","enjoy","fork","french fries","fresh","hello","hot","icecream","ingredients","juicy","ketchup","lactose","lettuce","lid","manager","menu","milk","mustard","napkin","no","order","pepper","pickle","pizza","please","ready","receipt","refill","repeat","safe","salt","sandwich","sauce","small","soda","sorry","spicy","spoon","straw","sugar","sweet","thank-you","tissues","tomato","total","urgent","vegetables","wait","warm","water","what","would","yoghurt","your"]

每个类别标注的框数:

additional 框数 = 133

alcohol 框数 = 107

allergy 框数 = 133

bacon 框数 = 167

bag 框数 = 114

barbecue 框数 = 49

bill 框数 = 133

biscuit 框数 = 72

bitter 框数 = 100

bread 框数 = 172

burger 框数 = 137

bye 框数 = 48

cake 框数 = 48

cash 框数 = 97

cheese 框数 = 142

chicken 框数 = 247

coke 框数 = 121

cold 框数 = 264

cost 框数 = 208

coupon 框数 = 143

credit card 框数 = 60

cup 框数 = 281

dessert 框数 = 96

drink 框数 = 132

drive 框数 = 95

eat 框数 = 71

eggs 框数 = 133

enjoy 框数 = 182

fork 框数 = 49

french fries 框数 = 68

fresh 框数 = 47

hello 框数 = 126

hot 框数 = 169

icecream 框数 = 123

ingredients 框数 = 350

juicy 框数 = 204

ketchup 框数 = 60

lactose 框数 = 216

lettuce 框数 = 61

lid 框数 = 183

manager 框数 = 250

menu 框数 = 356

milk 框数 = 167

mustard 框数 = 95

napkin 框数 = 213

no 框数 = 62

order 框数 = 79

pepper 框数 = 125

pickle 框数 = 47

pizza 框数 = 131

please 框数 = 72

ready 框数 = 63

receipt 框数 = 35

refill 框数 = 160

repeat 框数 = 48

safe 框数 = 71

salt 框数 = 112

sandwich 框数 = 70

sauce 框数 = 191

small 框数 = 79

soda 框数 = 152

sorry 框数 = 59

spicy 框数 = 70

spoon 框数 = 45

straw 框数 = 263

sugar 框数 = 64

sweet 框数 = 123

thank-you 框数 = 127

tissues 框数 = 79

tomato 框数 = 58

total 框数 = 84

urgent 框数 = 155

vegetables 框数 = 104

wait 框数 = 42

warm 框数 = 162

water 框数 = 123

what 框数 = 98

would 框数 = 28

yoghurt 框数 = 132

your 框数 = 37

总框数:9772

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:


标注例子(随机抽16张图展示):




创作时间: