直接写一区! ZOA-PCNN-AT-SVM斑马优化并行卷积-支持向量机融合注意力机制的故障识别程序,直接运行!

作品简介

适用平台:Matlab2023版本及以上

本原创程序提出的ZOA-PCNN-AT-SVM故障识别模型还没有人写!在此基础上进一步对参考模型进行多重改进,程序注释清晰,干货满满,下面对文章和程序做简要介绍!

①识别模型部分参考中文EI期刊《电力自动化设备》12月29号网络首发文献:《基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断》;

②优化模型部分参考知名SCI期刊《IEEE Access》2022年10月发表的论文《Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm》该算法提出时间很短,目前还没有套用这个算法的文献

识别模型原文献解读:这篇文献中,首先,采集一维故障电压与电流信号的时序序列;其次,利用格拉姆角场对其进行变换,将两种一维时序信号转化为格拉姆角场,最后,将生成的两组图像同时送入CNN进行并行学习训练,实现逆变器故障诊断。

斑马优化ZOA简介:ZOA斑马优化的基本灵感来自斑马在自然界中的行为。ZOA模拟了斑马的觅食行为及其对捕食者攻击的防御策略,对 ZOA 步骤进行描述,然后进行数学建模。ZOA 在优化方面的性能根据 68 个基准函数进行评估,包括单峰、高维多模态、固定维多模态。将ZOA获得的结果与九种知名算法GWO、TLBO、GA、MPA、PSO、QANA、TSA、WOA和GSA的性能进行了比较,仿真结果表明,ZOA能够通过在探索和开发之间建立适当的平衡来解决优化问题,并且与9种竞争算法相比具有更优越的性能。并在四个实际工程问题上对ZOA进行了测试。

模型改进:我们提出的模型在上述文献模型基础上作出多重改进,提出的ZOA-PCNN-AT-SVM故障识别模型:采用双支路结构,仅需原始故障波形数据,即可根据波形数据,将一维序列转化为二维格拉姆求和场图像。将图像同时输入PCNN-AT-SVM模型,用ZOA对模型中的超参数进行寻优,提供两条支路提取的特征图,提供原始样本和特征样本之间的分布情况,提高模型可解释性,并计算精确度、召回率、精确率、F1分数等评价指标。故障识别流程如下:

七重创新点:

1、时序图像化:将一维时序信号转化为二维图像,从而更全面地描述数据的特征。这有助于提取更丰富、更有区别性的特征,从而提高分类和识别的准确性。

2、空间特征学习:CNN(卷积神经网络)在图像处理中表现出色,能够有效地学习图像的空间特征和局部模式。将CNN用于图像数据的处理可以帮助提取图像的纹理、形状和边缘等特征,有助于更准确地进行分类和故障识别。

3、双支路结构:利用两个分支CNN学习不同的图像权重值,双支路高维特征互补,使得深层空间特征得到显著增强。

4、多头自注意力机制:融合多头注意力机制有效把握提取特征的贡献程度,将特征进行重点强化,提高故障识别的准确率。

5、可解释性:为提升模型的可解释性,应用t-SNE可解释性算法对各个支路模块的特征图进行可视化;对比原始样本和ZOA-PCNN-AT-SVM提取特征后的样本分布情况。

6、改进输出结构:将原始的Softmax层改进为SVM,Softmax作为概率方法,会受到异常值的影响,而SVM采用样本分布的边缘来分类一定距离内的故障样本,对异常值具有更强的鲁棒性。

7、超参数优化:斑马优化算法ZOA对模型中的难以确定的学习率、支路1卷积核大小、支路2卷积核大小等参数进行寻优,使得模型的结构更加合理,提高了故障识别精度。

适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。

以下手把手带大家分析程序的结果:

数据格式:一行一个样本(代表一个波形,N行N个波形),最后一列为样本所属的故障类型标签直接替换数据就可以,使用Excel表格直接导入,不需要对程序大幅修改。程序内有详细注释,便于理解程序运行。

程序结果:(由上述一维序列自动转化为格拉姆图像)

模型结构:

PCNN 双支路实现特征可视化(证明2条支路的特征不同,有互补性)

与原始样本相比,ZOA-PCNN-SVM 能够实现样相同样本聚合,实现同类别故障样本的聚合(不同类间的区分,同类间的聚合)

模型训练曲线:

训练曲线:和 斑马优化ZOA适应度曲线:

部分图片来源于网络,侵权联系删除!

创作时间: