程序平台:适用于MATLAB 2023版及以上版本。
代码说明:基于开普勒优化算法(KOA)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)融合注意力机制的超前24步多变量时间序列回归预测算法。
开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出的一种基于物理学的元启发式算法,于2023年5月发表在SCI、中科院1区Top顶级期刊《Knowledge-Based Systems》上,它受到开普勒行星运动定律的启发,可以预测行星在任何给定时间的位置和速度。在KOA中,每个行星及其位置都是一个候选解,它在优化过程中随机更新,相对于迄今为止最优解。
我们利用该新鲜出炉的算法对我们的CNN-BiGRU-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数进行优化,构成KOA-CNN-BiGRU-Attention多变量回归预测模型。
功能:
1、多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。
2、通过开普勒优化算法优化学习率、卷积核大小、神经元个数3个关键参数,以最小MAPE为目标函数。
3、提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线。
4、提供MAPE、RMSE、MAE等计算结果展示。
适用领域:
风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。
预测值与实际值对比;训练特征可视化:

训练误差曲线的极坐标形式(误差由内到外越来越接近0);适应度曲线(误差逐渐下降)
