无人机三维路径规划:粒子群优化算法PSO提供MATLAB代码

作品简介

一、粒子群优化算法PSO

粒子群优化 Particle Swarm Optimization PSO ),又称 微粒群算法 ,是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M. M. Millonas在开发应用于 人工生命 (artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

二、无人机模型

无人机三维航迹规划_无人机航迹规划_IT猿手的博客-CSDN博客

参考文献:

[1]吕石磊,范仁杰,李震,陈嘉鸿,谢家兴.基于改进蝙蝠算法和圆柱坐标系的农业无人机航迹规划[J/OL].农业机械学报:1-19

[2]褚宏悦,易军凯.无人机安全路径规划的混沌粒子群优化研究[J/OL].控制工程:1-8

[3]MD Phung, Ha Q P . Safety-enhanced UAV Path Planning with Spherical Vector-based Particle Swarm Optimization: arXiv, 10.1016/j.asoc.2021.107376[P]. 2021.

[4]陈明强,李奇峰,冯树娟等.基于改进粒子群算法的无人机三维航迹规划[J].无线电工程,2023,53(02):394-400.

[5]徐建新,孙纬,马超.基于改进粒子群算法的无人机三维路径规划[J/OL].电光与控制:1-10

三、粒子群优化算法PSO求解无人机路径规划

close all
clear
clc
dbstop if all error
global model
model = CreateModel(); % 创建模型
F='F1';
[Xmin,Xmax,dim,fobj] = fun_info(F);%获取函数信息
pop=50;%种群大小(可以自己修改)
maxgen=100;%最大迭代次数(可以自己修改)
[fMin,bestX,ConvergenceCurve] = PSO(pop, maxgen,Xmin,Xmax,dim,fobj);

四、完整MATLAB代码


创作时间: