MATLAB | 时间序列预测 | ARIMA 预测模型 | 附数据和出图代码 | 直接上手

作品简介

ARIMA(Autoregressive Integrated Moving Average)模型是一种基于时间序列分析的预测模型,可以用于分析和预测具有时间依赖性和随机性的数据。ARIMA模型最初是由Box和Jenkins等人于1976年提出的,是一种广泛使用的时间序列模型,被用于生产和金融等领域的数据预测。 ARIMA模型的核心思想是对时间序列数据进行差分,使得序列变得平稳,然后通过自回归(AR)和移动平均(MA)的组合来建立模型,并利用该模型进行预测。ARIMA模型中的“AR”表示自回归,即当前数据与前面若干时刻的数据相关;“I”表示差分,即对数据进行差分使其平稳;“MA”表示移动平均,即当前数据与前面若干时刻的误差相关。 ARIMA模型的建立过程包括模型识别、参数估计和模型检验三个步骤。在模型识别阶段,需要确定ARIMA模型的阶数和差分次数;在参数估计阶段,需要对模型进行参数估计;在模型检验阶段,需要对模型进行检验并判断模型的预测精度是否满足要求。 ARIMA模型的优点是可以充分利用时间序列数据的历史信息进行预测,能够适应多种不同类型的时间序列数据,并且模型具有较好的解释性。但是ARIMA模型也有一些缺点,如对于非平稳的时间序列数据需要进行差分处理,同时模型的参数估计过程较为繁琐。

附出图效果如下:



附视频教程操作:


创作时间:2023-03-13 21:36:25