基于matlab的LDPC译码算法误码率对比仿真,对比BP和BF译码,包括程序操作录像

作品简介

1.软件版本

matlab2022a

2.运行方法

     使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。视频播放使用windows media player播放。

3.部分仿真截图

4.内容简介

  LDPC ( Low-density Parity-check,低密度奇偶校验)码是由 Gallager 在1963 年提出的一类具有稀疏校验矩阵的线性分组码 (linear block codes),然而在接下来的 30 年来由于计算能力的不足,它一直被人们忽视。1996年,D MacKay、M Neal 等人对它重新进行了研究,发现 LDPC 码具有逼近香农极限的优异性能。并且具有译码复杂度低、可并行译码以及译码错误的可检测性等特点,从而成为了信道编码理论新的研究热点。Mckay ,Luby 提出的非正则 LDPC 码将 LDPC 码的概念推广。非正则LDPC码 的性能不仅优于正则 LDPC 码,甚至还优于 Turbo 码的性能,是目前己知的最接近香农限的码。Richardson 和 Urbank 也为 LDPC 码的发展做出了巨大的贡献。首先,他们提出了一种新的编码算法,在很大程度上减轻了随机构造的 LDPC 码在编码上的巨大运算量需求和存储量需求。其次,他们发明了密度演进理论,能够有效的分析出一大类 LDPC 译码算法的译码门限。仿真结果表明,这是一个紧致的译码门限。最后,密度演进理论还可以用于指导非正则 LDPC码 的设计,以获得尽可能优秀的性能。

创作时间:2023-03-11 18:13:54