1.软件版本
matlab2022a
2.运行方法
使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。视频播放使用windows media player播放。
3.部分仿真截图
4.内容简介
EM (Expectation Maximization)算法是由Dempster、Laind和Rubin在1977年提出的一种求参数的极大似然估计方法,可以广泛地应用于处理缺损数据、截尾数据等带有噪声的不完整数据。针对不完整数据集,EM算法主要应用于以下两种情况的参数估计:第一,由于观测过程中本身的错误或局限性导致的观测数据自身不完整;第二,数据没有缺失,但是无法得到似然函数的解析解,或似然函数过于复杂,难以直接优化分析,而引入额外的缺失参数能使得简化后的似然函数便于参数估计。