包括程序操作录像+说明文档+参考文献
1.软件版本
matlab2013b
2.运行方法
使用matlab2013b版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。视频播放使用windows media player播放。
3.部分仿真截图
4.内容简介
半监督学习(Semi-supervised learning)发挥作用的场合是:你的数据有一些有label,一些没有。而且一般是绝大部分都没有,只有少许几个有label。半监督学习算法会充分的利用unlabeled数据来捕捉我们整个数据的潜在分布。它基于三大假设:
1)Smoothness平滑假设:相似的数据具有相同的label。
2)Cluster聚类假设:处于同一个聚类下的数据具有相同label。
3)Manifold流形假设:处于同一流形结构下的数据具有相同label。
标签传播算法(label propagation)的核心思想非常简单:相似的数据应该具有相同的label。LP算法包括两大步骤:1)构造相似矩阵(affinity matrix);2)勇敢的传播吧。
label propagation是一种基于图的算法。图是基于顶点和边组成的,每个顶点是一个样本,所有的顶点包括了有标签样本和无标签样本;边代表了顶点i到顶点j的概率,换句话说就是顶点i到顶点j的相似度。