【目标检测】餐厅餐盘剩余食物种类检测数据集6037张YOLO+VOC格式.zip

作品简介
资源说明:资源文件统一放在百度云盘存储下载,如下载失败可联系本人补发邮箱(联系时邮箱地址提供一下哈)~~~~~ 数据集格式:VOC格式+YOLO格式 压缩包内含:3个文件夹,分别存储图片、xml、txt文件 JPEGImages文件夹中jpg图片总计:6037 Annotations文件夹中xml文件总计:6037 labels文件夹中txt文件总计:6037 标签种类数:32 标签名称:["Apple","Apple-core","Apple-peel","Bone","Bone-fish","Bread","Bun","Egg-hard","Egg-scramble","Egg-shell","Egg-steam","Egg-yolk","Fish","Meat","Mussel","Mussel-shell","Noodle","Orange","Orange-peel","Other-waste","Pancake","Pasta","Pear","Pear-core","Pear-peel","Potato","Rice","Shrimp","Shrimp-shell","Tofu","Tomato","Vegetable"] 每个标签的框数(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准): Apple 框数 = 23 Apple-core 框数 = 759 Apple-peel 框数 = 1612 Bone 框数 = 4379 Bone-fish 框数 = 722 Bread 框数 = 908 Bun 框数 = 36 Egg-hard 框数 = 19 Egg-scramble 框数 = 18 Egg-shell 框数 = 3811 Egg-steam 框数 = 98 Egg-yolk 框数 = 784 Fish 框数 = 120 Meat 框数 = 1020 Mussel 框数 = 27 Mussel-shell 框数 = 86 Noodle 框数 = 538 Orange 框数 = 84 Orange-peel 框数 = 2174 Other-waste 框数 = 152 Pancake 框数 = 33 Pasta 框数 = 9 Pear 框数 = 6 Pear-core 框数 = 272 Pear-peel 框数 = 404 Potato 框数 = 139 Rice 框数 = 873 Shrimp 框数 = 13 Shrimp-shell 框数 = 48 Tofu 框数 = 20 Tomato 框数 = 59 Vegetable 框数 = 4106 总框数:23352 图片清晰度(分辨率:像素):清晰 图片是否增强:否 标签形状:矩形框,用于目标检测识别 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
创作时间: