货车上集装箱编号文字检测数据集VOC+YOLO格式1847张35类别

作品简介

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):1847

标注数量(xml文件个数):1847

标注数量(txt文件个数):1847

标注类别数:35

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","Q","R","S","T","U","V","W","X","Y","Z"]

每个类别标注的框数:

0 框数 = 1590

1 框数 = 1328

2 框数 = 1270

3 框数 = 1351

4 框数 = 1227

5 框数 = 1342

6 框数 = 1217

7 框数 = 1105

8 框数 = 1263

9 框数 = 1226

A 框数 = 322

B 框数 = 335

C 框数 = 507

D 框数 = 156

E 框数 = 265

F 框数 = 98

G 框数 = 177

H 框数 = 125

I 框数 = 120

J 框数 = 4

K 框数 = 277

L 框数 = 279

M 框数 = 717

N 框数 = 323

O 框数 = 186

Q 框数 = 52

R 框数 = 367

S 框数 = 431

T 框数 = 467

U 框数 = 1930

V 框数 = 1

W 框数 = 48

X 框数 = 81

Y 框数 = 12

Z 框数 = 101

总框数:20300

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:


标注例子:



创作时间: