1.软件版本
matlab2022a
2.运行方法
使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。视频播放使用windows media player播放。
3.部分仿真截图





4.内容简介
在现代通信系统中,高效可靠的信号检测至关重要。正交频分复用(OFDM)技术因其能有效对抗多径衰落、提高频谱效率等优点,被广泛应用于众多通信标准,如 4G、5G 移动通信以及数字视频广播等领域。正交相移键控(QPSK)则是一种常用的数字调制方式,它在有限的带宽内实现了较高的数据传输速率。然而,在复杂的通信环境中,OFDM-QPSK 信号会受到噪声、干扰等因素的影响,传统的信号检测方法在性能上存在一定的局限性。深度神经网络(DNN)以其强大的特征学习和模式识别能力,为 OFDM-QPSK 信号检测提供了新的解决方案,能够有效提升检测性能,适应复杂多变的通信场景。
DNN 是一种包含多个隐藏层的神经网络,通常由输入层、隐藏层和输出层组成。每一层由多个神经元组成,神经元之间通过权重连接。在基于 DNN 的 OFDM - QPSK 信号检测中,输入层接收经过处理的 OFDM-QPSK 信号特征,隐藏层对这些特征进行逐层提取和变换,输出层则输出检测结果。