13种植物叶片叶子病害检测数据集VOC+YOLO格式2258张30类别

作品简介

提供百度云盘地址下载

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):2558

标注数量(xml文件个数):2558

标注数量(txt文件个数):2558

标注类别数:30

所在仓库:firc-dataset

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Apple Scab Leaf","Apple leaf","Apple rust leaf","Bell_pepper leaf","Bell_pepper leaf spot","Blueberry leaf","Cherry leaf","Corn Gray leaf spot","Corn leaf blight","Corn rust leaf","Peach leaf","Potato leaf","Potato leaf early blight","Potato leaf late blight","Raspberry leaf","Soyabean leaf","Soybean leaf","Squash Powdery mildew leaf","Strawberry leaf","Tomato Early blight leaf","Tomato Septoria leaf spot","Tomato leaf","Tomato leaf bacterial spot","Tomato leaf late blight","Tomato leaf mosaic virus","Tomato leaf yellow virus","Tomato mold leaf","Tomato two spotted spider mites leaf","grape leaf","grape leaf black rot"]

每个类别标注的框数:

Apple Scab Leaf (苹果黑星病叶) 框数 = 171

Apple leaf (苹果叶片) 框数 = 247

Apple rust leaf (苹果锈病叶) 框数 = 178

Bell_pepper leaf (甜椒叶片) 框数 = 323

Bell_pepper leaf spot (甜椒叶斑病叶) 框数 = 263

Blueberry leaf (蓝莓叶片) 框数 = 838

Cherry leaf (樱桃叶片) 框数 = 239

Corn Gray leaf spot (玉米灰斑病叶) 框数 = 76

Corn leaf blight (玉米叶枯病叶) 框数 = 368

Corn rust leaf (玉米锈病叶) 框数 = 127

Peach leaf (桃树叶片) 框数 = 614

Potato leaf (马铃薯叶片) 框数 = 11

Potato leaf early blight (马铃薯早疫病叶) 框数 = 318

Potato leaf late blight (马铃薯晚疫病叶) 框数 = 245

Raspberry leaf (树莓叶片) 框数 = 556

Soyabean leaf (大豆叶片) 框数 = 266

Soybean leaf (大豆叶片) 框数 = 15

Squash Powdery mildew leaf (西葫芦白粉病叶) 框数 = 256

Strawberry leaf (草莓叶片) 框数 = 492

Tomato Early blight leaf (番茄早疫病叶) 框数 = 212

Tomato Septoria leaf spot (番茄斑枯病叶) 框数 = 426

Tomato leaf (番茄叶片) 框数 = 400

Tomato leaf bacterial spot (番茄细菌性斑点病叶) 框数 = 280

Tomato leaf late blight (番茄晚疫病叶) 框数 = 218

Tomato leaf mosaic virus (番茄花叶病毒病叶) 框数 = 261

Tomato leaf yellow virus (番茄黄化病毒病叶) 框数 = 801

Tomato mold leaf (番茄叶霉病叶) 框数 = 295

Tomato two spotted spider mites leaf (番茄二斑叶螨危害叶) 框数 = 2

grape leaf (葡萄叶片) 框数 = 220

grape leaf black rot (葡萄黑腐病叶) 框数 = 133

总框数:8851

图片分辨率:多分辨率图片,如600x668,640x640等

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证

图片预览:



标注例子:




创作时间: