注意数据集图片都是采集同一个人手势,整个数据集都是一个人模拟拍摄出来的
数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)
图片数量(jpg文件个数):2582
标注数量(xml文件个数):2582
标注数量(txt文件个数):2582
标注类别数:52
所在仓库:firc-dataset
标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["I","Play","So-so","Tomorrow","Use","Your","before","clean","drink","eat","future","good_morning","hand-gestures","happy","hate","hello","help","hour","house","how","like","live","livelong","love","more","need","new","no","past","show","sick","sleep","slow","sorry","start","stop","take care of yourself","temperature","time","today","understand","wait","wake up","want","welcome","what","where","who","why","wrong","yes","you"]
每个类别标注的框数:
I (我) 框数 = 49
Play (玩耍/播放) 框数 = 50
So-so (一般/还好) 框数 = 50
Tomorrow (明天) 框数 = 50
Use (使用) 框数 = 50
Your (你的) 框数 = 50
before (之前) 框数 = 50
clean (清洁) 框数 = 51
drink (喝) 框数 = 50
eat (吃) 框数 = 51
future (未来) 框数 = 49
good_morning (早上好) 框数 = 50
hand-gestures (手势) 框数 = 2
happy (开心) 框数 = 45
hate (讨厌) 框数 = 50
hello (你好) 框数 = 50
help (帮助) 框数 = 50
hour (小时) 框数 = 49
house (房子) 框数 = 51
how (如何) 框数 = 50
like (喜欢) 框数 = 50
live (居住) 框数 = 50
livelong (长寿) 框数 = 50
love (爱) 框数 = 49
more (更多) 框数 = 49
need (需要) 框数 = 50
new (新的) 框数 = 51
no (不) 框数 = 49
past (过去) 框数 = 48
show (展示) 框数 = 49
sick (生病) 框数 = 50
sleep (睡觉) 框数 = 45
slow (缓慢) 框数 = 1
sorry (对不起) 框数 = 49
start (开始) 框数 = 53
stop (停止) 框数 = 50
take care of yourself (照顾好自己) 框数 = 48
temperature (温度) 框数 = 116
time (时间) 框数 = 48
today (今天) 框数 = 51
understand (理解) 框数 = 49
wait (等待) 框数 = 52
wake up (醒来) 框数 = 50
want (想要) 框数 = 50
welcome (欢迎) 框数 = 50
what (什么) 框数 = 49
where (哪里) 框数 = 50
who (谁) 框数 = 50
why (为什么) 框数 = 50
wrong (错误的) 框数 = 50
yes (是的) 框数 = 100
you (你) 框数 = 50
总框数:2603
图片分辨率:640x640
使用标注工具:labelImg
标注规则:对类别进行画矩形框
重要说明:暂无
特别声明:本数据集不对训练的模型或者权重文件精度作任何保证
图片预览:
标注例子: