提供百度云盘地址下载
数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)
图片数量(jpg文件个数):9977
标注数量(xml文件个数):9977
标注数量(txt文件个数):9977
标注类别数:20
所在仓库:firc-dataset
标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["ashcan","bicycle","blind_road","bus","car","crosswalk","dog","fire_hydrant","green_light","motorcycle","person","pole","red_light","reflective_cone","roadblock","sign","tree","tricycle","truck","warning_column"]
每个类别标注的框数:
ashcan (垃圾桶) 框数 = 2064
bicycle (自行车) 框数 = 4368
blind_road (盲道) 框数 = 1674
bus (公交车) 框数 = 1257
car (轿车) 框数 = 19669
crosswalk (人行横道) 框数 = 6132
dog (狗) 框数 = 710
fire_hydrant (消防栓) 框数 = 1004
green_light (绿灯) 框数 = 3551
motorcycle (摩托车) 框数 = 8777
person (行人) 框数 = 24993
pole (杆状物) 框数 = 22242
red_light (红灯) 框数 = 3508
reflective_cone (反光锥) 框数 = 2915
roadblock (路障) 框数 = 3192
sign (标志牌) 框数 = 2333
tree (树木) 框数 = 16322
tricycle (三轮车) 框数 = 1139
truck (卡车) 框数 = 2533
warning_column (警示柱) 框数 = 7513
总框数:135896
图片分辨率:640x640
使用标注工具:labelImg
标注规则:对类别进行画矩形框
重要说明:暂无
特别声明:本数据集不对训练的模型或者权重文件精度作任何保证
图片预览:
标注例子: