食物浪费检测数据集VOC+YOLO格式6734张32类别

作品简介

提供百度云盘地址

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):6734

标注数量(xml文件个数):6734

标注数量(txt文件个数):6734

标注类别数:32

所在仓库:firc-dataset

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["Apple","Apple-core","Apple-peel","Bone","Bone-fish","Bread","Bun","Egg-hard","Egg-scramble","Egg-shell","Egg-steam","Egg-yolk","Fish","Meat","Mussel","Mussel-shell","Noodle","Orange","Orange-peel","Other-waste","Pancake","Pasta","Pear","Pear-core","Pear-peel","Potato","Rice","Shrimp","Shrimp-shell","Tofu","Tomato","Vegetable"]

每个类别标注的框数:

Apple 框数 = 1354

Apple-core 框数 = 759

Apple-peel 框数 = 1612

Bone 框数 = 4379

Bone-fish 框数 = 722

Bread 框数 = 928

Bun 框数 = 36

Egg-hard 框数 = 37

Egg-scramble 框数 = 20

Egg-shell 框数 = 3811

Egg-steam 框数 = 98

Egg-yolk 框数 = 784

Fish 框数 = 138

Meat 框数 = 1020

Mussel 框数 = 27

Mussel-shell 框数 = 86

Noodle 框数 = 538

Orange 框数 = 2512

Orange-peel 框数 = 2194

Other-waste 框数 = 152

Pancake 框数 = 33

Pasta 框数 = 9

Pear 框数 = 1186

Pear-core 框数 = 272

Pear-peel 框数 = 404

Potato 框数 = 140

Rice 框数 = 873

Shrimp 框数 = 13

Shrimp-shell 框数 = 48

Tofu 框数 = 20

Tomato 框数 = 71

Vegetable 框数 = 4170

总框数:28446

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

图片分辨率:640x640

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证

图片预览:




标注例子:



创作时间: