数据集中有大约一半为增强图片,请查看图片预览
数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)
图片数量(jpg文件个数):13364
标注数量(xml文件个数):13364
标注数量(txt文件个数):13364
标注类别数:15
标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["board","brick","cutter","ebox","fence","handcart","helmet","hook","hopper","person","rebar","scaffold","slogan","vest","wood"]
["木板", "砖块", "切割机", "电箱", "围栏", "手推车", "安全帽", "挂钩", "料斗", "人员", "钢筋", "脚手架", "标语", "背心", "木材"]
每个类别标注的框数:
board 框数 = 8319
brick 框数 = 2242
cutter 框数 = 1197
ebox 框数 = 5609
fence 框数 = 5581
handcart 框数 = 828
helmet 框数 = 37100
hook 框数 = 5637
hopper 框数 = 3504
person 框数 = 48633
rebar 框数 = 4474
scaffold 框数 = 17209
slogan 框数 = 12143
vest 框数 = 31336
wood 框数 = 11660
总框数:195472
使用标注工具:labelImg
所在仓库:firc-dataset
标注规则:对类别进行画矩形框
重要说明:暂无
特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
图片预览:


标注例子:
