基于YOLOv11+PP-OCRv5深度学习的智能车牌检测与识别系统python源码+pytorch模型+评估指标曲线+精美GUI界面

作品简介
1%


【测试环境】

windows10

anaconda3+python3.8

torch==2.3.1+cu118

ultralytics==8.3.120

paddlepaddle-gpu==3.0.1

padddleocr==3.0.1

【模型可以检测出类别】

car-plate

【识别原理】

使用yolo11训练车牌检测模型进行车牌检测,然后将检测出车牌抠出来直接放入paddleocr的文本识别模型进行识别,因此识别不需要训练。注意由于直接用paddleocr通用模型进行识别,因此对正面清晰车牌识别很好,但是对应模糊倾斜可能会很差。

【环境准备】

Python版本:确保Python版本为3.8或更高。

操作系统:支持Windows、Linux或MacOS。

虚拟环境:推荐使用conda或venv创建虚拟环境,以避免依赖冲突。

创建并激活虚拟环境

使用conda创建虚拟环境:conda create -n paddle_env python=3.8,然后激活环境:conda activate paddle_env。

或者使用venv创建虚拟环境:python -m venv paddle_env,然后在Windows上激活:paddle_env\Scripts\activate,在Linux/MacOS上激活:source paddle_env/bin/activate。

安装PaddlePaddle

根据硬件选择安装命令。如果需要GPU支持,确保已安装CUDA和cuDNN,并安装PaddlePaddle GPU版本。例如:pip install paddlepaddle-gpu==3.0.0 -f https://www.paddlepaddle.org.cn/whl/stable.html。

如果不需要GPU支持,安装CPU版本:pip install paddlepaddle==3.0.0。

安装PaddleOCR

安装PaddleOCR 3.0.1或更高版本:pip install paddleocr>=3.0.1。

验证安装

进入Python交互环境,导入PaddleOCR并打印版本信息:

from paddleocr import PaddleOCR如果运行无误,说明安装成功。

安装YOLOv11

安装PyTorch

根据硬件选择安装命令。如果需要GPU支持,安装GPU版本的PyTorch。例如:

pip install torch==2.3.1+cu118 torchvision==0.18.1+cu118 -f  https://download.pytorch.org/whl/torch_stable.html

如果不需要GPU支持,安装CPU版本:

pip install torch==2.3.1+cpu torchvision==0.18.1+cpu -f  https://download.pytorch.org/whl/torch_stable.html

安装YOLOv11

使用pip安装ultralytics包:pip install ultralytics==8.3.120

【使用步骤】

使用步骤:

(1)首先根据官方框架github.com/ultralytics/ultralytics安装教程安装好yolov11环境,并安装好pyqt5

(2)切换到自己安装的yolov11环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码

yolov11n.pt模型

测试图片(在test_img文件夹下面)



创作时间: