m基于GA遗传优化的BP神经网络时间序列预测算法matlab仿真,包括程序操作录像+说明文档+参考文献

作品简介

1.软件版本

matlab2022a

2.运行方法

     使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.部分仿真截图

 

 

 

 

4.内容简介

  在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

     学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

     BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-1,1]之间的随机数作为BP神经网络的初始权值。

     本文,通过matlab的BP神经网络工具箱函数newff来构建BP神经网络,通过newff函数构建BP网络,其主要步骤如下:

      第一,BP神经网络初始化后,其matlab程序如下:

      net = newff(traindata, trainaim, HiddenNum);

     其中traindata表示训练数据,trainaim表示训练目标,HiddenNum表示BP神经网络隐含层个数,net表示BP神经网络模型函数。

      第二,BP神经网络参数设置,其matlab程序所示:

设置学习率,其matlab程序为 net.trainParam.lr = 0.25;

设置训练误差目标,其matlab程序为net.trainParam.goal = 1e-8;

设置神经网络训练次数,其matlab程序为net.trainParam.epochs = 200;

     第三,BP神经网络的训练,其matlab程序所示:

     net = train(net,traindata,trainaim);

这里通过train函数对神经网络net进行训练,得到训练后的BP神经网络模型。

创作时间:2022-11-30 16:42:56