m基于梯度优化的混沌PSO磁悬浮球系统模型优化的matlab仿真,包括程序操作录像+设计文档+参考文献

作品简介

1.软件版本

matlab2022a

2.运行方法

     使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.部分仿真截图

 

 

 

 

 

4.内容简介

基本确定融合后的优化控制算法,即混沌粒子群优化算法,将该算法应用于对PID的参数整定上,通过仿真验证算法的可行性。将混沌思想引入PSO算法,前期工作首先对混沌算法局部搜索能力差和算法可能需要花费长时间才能取得较好优化性能的不足进行了改进,提出梯度优化混沌算法的思想,基本实现了梯度算法与混沌算法的融合,实现了用梯度算法改善混沌算法的预期目的,达到了取长补短的效果,使得该算法即高效又不容易陷入局部极小,为后期将优化后的混沌算法引入PSO算法做好了准备。主要研究如何把PSO算法与得到的混沌算法有效的结合,实现预期目的,用混沌算法来改善PSO算法,使其能持续在全局范围搜索,避免算法早熟。研究实现如下思路的混沌粒子群优化算法:将混沌映射直接映入PSO算法的迭代过程,使算法能持续在全局范围搜索,避免算法早熟,但对于算法后期收敛精度不高和收敛速度下降的问题,此时考虑再将梯度算法引入,以粒子群当前获得的最优粒子所在位置为初始点进行梯度搜索,提高局部搜索效率。再将混沌PSO和梯度算法的搜索过程进行循环,得到新的混沌PSO优化算法。将该算法应用到PID参数整定上,与前期所设计的算法进行比较,得到更优的。


创作时间:2022-11-28 16:09:58