基于matlab的有参考图像质量评价,使用多种算法进行图像质量评价仿真,包括程序操作录像

作品简介

1.软件版本

matlab2022a

2.运行方法

     使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.部分仿真截图

4.内容简介

  图像质量评价(Image Quality Assessment,IQA)是图像处理中的基本技术之一,主要通过对图像进行特性分析研究,然后评估出图像优劣(图像失真程度)。图像质量评价在图像处理系统中,对于算法分析比较、系统性能评估等方面有着重要的作用。近年来,随着对数字图像领域的广泛研究,图像质量评价的研究也越来越受到研究者的关注,提出并完善了许多图像质量评价的指标和方法。

     主观评价只涉及人作出的定性评价,它以人为观察者,对图像的优劣作出主观的定性评价。对于观察者的选择一般考虑未受训练的“外行”或者训练有素的“内行”。该方法是建立在统计意义上的,为保证图像主观评价在统计上有意义,参加评价的观察者应该足够多。主观评价方法主要可分为两种:绝对评价和相对评价。

     相对评价中没有原始图像作为参考,是由观察者对一批待评价图像进行相互比较,从而判断出每个图像的优劣顺序,并给出相应的评价值。通常,相对评价采用单刺激连续质量评价方法(Single Stimulus Continuous Quality Evaluation,SSCQE)。具体做法是,将一批待评价图像按照一定的序列播放,此时观察者在观看图像的同时给出待评图像相应的评价分值。相对于主观绝对评价,主观相对评价也规定了相应的评分制度,称为“群优度尺度”。

     图像质量客观评价可分为全参考(Full-Reference,FR),部分参考(Reduced-Reference,RR)和无参考(No-Reference,NR)三种类型。

创作时间:2022-11-04 18:53:49