m基于深度学习的OFDM信道估计和均衡算法误码率matlab仿真,对比了LS,MMSE以及LMMSE等传统的信道估计算法

作品简介

(包括程序操作录像+参考文献)

1.软件版本

matlab2022a

2.运行方法

    使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.部分仿真截图

 

 

4.内容简介

   随着无线通信的快速发展,5G正逐渐成长为支撑全社会各行业运作的大型基础性互联网络,其服务范围的大幅扩展对底层技术提出了诸多挑战,尤其是作为物理层关键技术之一的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)。近来,深度学习因其在计算机视觉以及自然语言处理领域中的优异表现而备受关注,其极强的普适性也为传统通信提供了新的发展空间。就OFDM系统中的信道估计问题展开深入研究,探索深度学习在该领域的应用可能。


    信道估计器是接收机一个很重要的组成部分。在OFDM系统中,信道估计器的设计上要有两个问题:一是导频信息的选择,由于无线信道的时变特性,需要接收机不断对信道进行跟踪,因此导频信息也必须不断的传送: 二是既有较低的复杂度又有良好的导频跟踪能力的信道估计器的设计,在确定导频发送方式和信道估计准则条件下,寻找最佳的信道估计器结构。 **在实际设计中,导频信息的选择和最佳估计器的设计通常又是相互关联的,因为估计器的性能与导频信息的传输方式有关。


   基于OFDM 的通信系统如下:




基于深度学习的信道估计:


    基于深度学习的参数估计方法DL-CE,采用LS方法获取导频位置处的CFR,再通过所设计的深度学习估计网络获取各个数据符号位置的信道响应。由于在多径环境下,信道呈现频域选择性衰落,传统的线性插值方法无法跟踪信道的变化。基于深度学习的信道估计方法,同时估计信道响应与信道的频域相关系数,可以实时追踪信道的频域变化。



————————————————

版权声明:本文为CSDN博主「我爱C编程」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/hlayumi1234567/article/details/127495081

创作时间:2022-10-28 07:18:57