m基于OFDM的同步技术的研究,对比schmidl,minn,park,Landstrom(包括操作录像+word论文)

作品简介

1.软件版本

matlab2013B

2.运行方法

    使用matlab2013B版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.部分仿真截图

 ​编辑

 ​编辑

 ​编辑

 ​编辑

4.内容简介

    在现代短波通信系统中,其信道一般具有频率多样性和频率选择性,因此在短波通信过程中,多径的传播将产生信号的符号干扰和衰落。和传统的频分复用相比,OFDM通信技术可以最大限度的增加频谱利用率,同时OFDM将高速传输数据进行串并转换,从而增加子载波的符号周期,最终将频率选择性衰落的信道转换为平衰落信道。因此,OFDM技术具有优良的抗多径能力,较高的频谱利用率,在短波通信中有着十分重要的应用。

    OFDM系统模型的基本结构如下图所示:

​编辑

    由于OFDM系统对多普勒频偏和定时有着较为严格的要求,因此,载波同步和符号同步是OFDM系统中的一个重要模块。同步过程分为同步捕获阶段和同步跟踪节点,目前较为常见的同步捕获算法主要包括T.Schmidl&D.Cox算法,Minn算法,Park算法以及Landstrom算法。 

   T.Schmidl&D.Cox算法(简称SC算法)主要是通过两个OFDM符号作为训练序列进行时间和频率同步,SC算法的帧结构如下图所示:

​编辑

    Minn算法是在SC算法基础之上改进得到,常见的Minn算法主要有基于训练符号结构的SC改进算法以及基于滑动窗口法的SC改进算法。但是基于滑动窗口法的SC改进算法会产生较多的峰值,从而影响判决。因此,本章节采用基于训练符号结构的SC改进算法,其帧结构如下所示:

​编辑

     Park算法,其主要通过新构造的帧结构和定时度量函数来最大程度的加大相邻点定时度量函数的差别,从而保证估计得到的定时点和其他干扰定时度量值之间的差值最大化。Park算法的帧结构如下所示: 

​编辑

     Landstrom同步算法是一种不需要借助辅助数据的同步捕获算法,该算法是基于Van de Beek算法改进得到,其主要通过导频和循环前缀进行同步捕获。

创作时间:2022-10-16 17:15:09