NSGA2多目标优化算法的MATLAB仿真(包括程序操作录像)

作品简介

1.软件版本

matlab2022a

2.运行方法

     使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.部分仿真截图

 ​编辑

4.内容简介

    首先将一群具有多个目标的个体(解集,或者说线代里的向量形式)作为父代初始种群,在每一次迭代中,GA操作后合并父代于自带。通过非支配排序,我们将所有个体分不到不同的pareto最优前沿层次。然后根据不同层次的顺序从pareto最优前沿选择个体作为下一个种群。出于遗传算法中的“物种多样性”保护,还计算量“拥挤距离”。拥挤距离比较将算法各阶段的选择过程引向一致的前沿。   

    与单目标(遗传算法)最大的不同就是进行选择操作之前进行快速非支配排序,这一步也是为了选择操作而来的,选择哪些、怎么选是通过非快速支配排序来的。这就不像单目标,挑好的选就行了。

    支配: 在多目标优化问题中,如果个体p至少有一个目标比个体q好,而且个体p中的所有目标都不比个体q差,那么称个体p支配个体q。

   序值: 如果p支配q,那么p的序值比q低。如果p和q互不支配,那么p和q有相同的序值。

   拥挤距离:用来计算某前端中的某个体与该前端中其他个体之间的距离,用以表征个体间的拥挤程度。希望pareto解出来之后,点与点之间距离是相近的,不要太多的聚集在某个地方。用某个点与前后两个点之间的xy的距离和表示。算法会选择拥挤距离大的去领头。

   快速非支配排序:快速非支配排序就是将解集分解为不同次序的Pareto前沿的过程。将一组解分成n个集合:rank1,rank2…rankn,每个集合中所有的解都互不支配,但ranki中的任意解支配rankj中的任意解(i

综上所述,NSGAII的步骤如下所示:

步骤1:编码。遗传算法在进行搜索之前,将变量编成一个定长的编码——用二进制字符串来表示,这些字符串的不同组合,

便构成了搜索空间不同的搜索点。

步骤2:产生初始群体。随机产生N个字符串,每个字符串代表一个个体。

步骤3:按目标函数的个数分割子群体,对每个子群体进行如下操作:

1)计算目标函数值(此步调用ANSYs有限元程序,将ANSYS有限元程序得到的后处理结果传给MATLAB程序作为目标函数值);

2)计算每个个体的适应度,本文中采用线性排序法和选择压差为2估算适应度;

3)用随机遍历抽样方法在每个子种群中选择个体。

步骤4:将每个子种群中选择出的个体进行合并。

步骤5:交叉操作。本文中采用的是单点交叉操作。

步骤6:变异。对个体按给定的概率进行变异,形成新一代群体。

步骤7:将步骤6产生的个体合重复进行步骤3~ 步骤6的操作,直至完成规定的遗传迭代总次数。

创作时间:2022-10-15 21:16:33