m基于功率谱,高阶累积量和BP神经网络-GRNN网络的调制方式识别仿真,对比2psk,4PSK,2FSK以及4FSK

作品简介

1.软件版本

matlab2022a

2.运行方法

使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.内容简介

     首先区分大类的话采用的基于功率谱提取的len参数(峰值频率间隔),用峰值个数来代替,这样能很好的区分大类把MFSK和MPSK信号区分开。

针对MPSK:

一:基于瞬时参数——Char2你采用的这个是零中心非弱信号段瞬时相位非线性分量的标准偏差,这个是用来区分2PSK和4PSK的。

二:高阶累积量——针对MPSK高阶累积量的组合在高斯噪声以及多径下能较好的区分MPSK信号。

三:谱相关系数——参考文献(1)中基于谱相关的调制识别,采用谱相关系数在的最大值C可区分2PSK和4PSK。(文献1中4.3节中4.3.2的第四个特征参数)

四:循环累积量——针对MPSK循环累积量在多径下识别率较高,主要是计算量大,复杂度高的特点,区分效果和高阶累积量相同,也是具有抗多径的效果。

五:小波——参考文献(2)针对MPSK的调制识别,码元交界处有幅度不同的跳变,跳变的幅度个数表征PSK的调制阶数,这种特征提取需要进行符号速率估计!(文献2中5.1.4节PSK中的信号阶数判别)

六:M次方谱——参考文献(3),对于BPSK信号的平方谱在2倍载频处有很强的单频分量,其他的PSK信号无此特性,QPSK信号的四次方谱在2倍载频处有单频分量,所以M次方谱的单频分量的检测可以区分信号MPSK信号。

    广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。

    GRNN是RBF的一种改进,结构相似。区别就在于多了一层求和层,而去掉了隐含层与输出层的权值连接(对高斯权值的最小二乘叠加)。

1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。

2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。

3.加和层中有两个节点,第一个节点为每个隐含层节点的输出和,第二个节点为预期的结果与每个隐含层节点的加权和。

4.输出层输出是第二个节点除以第一个节点。

4.部分仿真截图

 ​编辑

 ​编辑

 ​编辑

创作时间:2022-10-07 17:50:09