基于遗传优化算法的小车障碍物避障路线规划matlab仿真(包括matlab仿真录像)

作品简介

1.软件版本

matlab2022a

2.运行方法

使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.内容简介

  一种通过模拟自然进化过程搜索最优解的方法,对于一个最优化问题,该算法通过一定数量的候选解种群迭代地执行选择、交叉、变异、评价等操作使得种群向更好的解进化。

     遗传算法中每一条染色体,对应着遗传算法的一个解决方案,一般我们用适应性函数(fitness function)来衡量这个解决方案的优劣。所以从一个基因组到其解的适应度形成一个映射。遗传算法的实现过程实际上就像自然界的进化过程那样。

遗传算法的一般步骤:

1.随机产生种群

2.根据策略判断个体的适应度,是否符合优化准则,若符合,输出最佳个体及其最优解,结束。否则,进行下一步

3.依据适应度选择父母,适应度高的个体被选中的概率高,适应度低的个体被淘汰

4.用父母的染色体按照一定的方法进行交叉,生成子代

5.对子代染色体进行变异

由交叉和变异产生新一代种群,返回步骤2,直到最优解产生

基本遗传算法的具体过程如下:

这里写图片描述​编辑

4.部分仿真截图

 优化初始阶段,路径。

​编辑

优化中期阶段,路径。

 ​编辑

优化结束,路径。

 ​编辑

创作时间:2022-10-02 03:33:09