m基于RBF神经网络和滑膜控制的风力发电系统状态观测和故障估计,RBF通过S函数实现,包括程序操作录像+说明文档

作品简介

1.软件版本

matlab2022a

2.运行方法

     使用matlab2022a或者高版本仿真,运行文件夹中的tops.m或者main.m。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体操作观看提供的程序操作视频跟着操作。

3.部分仿真截图

 

4.内容简介

   风力发电机采用状态监测和故障诊断技术的必要性 为了便于风能的获取,风场一般都设在比较偏远的山区或者近海区域,所以 风力发电机会受到阵风、侵蚀等因素的影响。风力发电机组一般设在 80~120m 的高空,在机组运行时需要承受较大的受力载荷。由于设计不合理、焊接质量缺 陷等原因会引发机组运行故障,当出现阵风时,会对叶片造成短暂而频繁的冲击 载荷,而叶片受到的荷载又会对传动链上的部件产生不同程度的影响而引发故障。利用RBF神经网络的非线性良好的逼近性能对风力发电系统建模。并考虑实际情况中,风力发电系统的状态量不可测,用RBF神经网络对系统的状态进行观测。

创作时间:2022-12-30 17:46:27